CRAM - A Cognitive Robot Abstract Machine for everyday manipulation in human environments
نویسندگان
چکیده
This paper describes CRAM (Cognitive Robot Abstract Machine) as a software toolbox for the design, the implementation, and the deployment of cognition-enabled autonomous robots performing everyday manipulation activities. CRAM equips autonomous robots with lightweight reasoning mechanisms that can infer control decisions rather than requiring the decisions to be preprogrammed. This way CRAMprogrammed autonomous robots are much more flexible, reliable, and general than control programs that lack such cognitive capabilities. CRAM does not require the whole domain to be stated explicitly in an abstract knowledge base. Rather, it grounds symbolic expressions in the knowledge representation into the perception and actuation routines and into the essential data structures of the control programs. In the accompanying video, we show complex mobile manipulation tasks performed by our household robot that were realized using the CRAM infrastructure.
منابع مشابه
Robot manipulation in human environments
Human environments present special challenges for robot manipulation. They are often dynamic, difficult to predict, and beyond the control of a robot engineer. Fortunately, many characteristics of these settings can be used to a robot’s advantage. Human environments are typically populated by people, and a robot can rely on the guidance and assistance of a human collaborator. Everyday objects e...
متن کاملCognition, control and learning for everyday manipulation tasks in human environments
In recent years we have seen tremendous advances in the mechatronic, sensing and computational infrastructure of robots, enabling them to act faster, stronger and more accurately than humans do. Yet, when it comes to accomplishing manipulation tasks in everyday settings, robots often do not even reach the sophistication and performance of young children. This is partly due to humans having deve...
متن کاملA Mixed-Initiative Approach to Interactive Robot Tutoring
Integrating the components described in the previous articles of this chapter, we introduce the Bielefeld “Curious Robot”, which is able to acquire new knowledge and skills in direct human-robot interaction. This paper focuses on the cognitive architecture of the overall system. We propose to combine (i) a communication layer based on a generic, human-accessible XML data format, (ii) multiple l...
متن کاملKnowledge Enabled High-Level Task Abstraction and Execution
This paper investigates issues in the plan design of cognition-enabled robotic agents performing everyday manipulation tasks. We believe that plan languages employed by most cognitive architectures are syntactically too restricted to specify the flexibility, generality, and robustness needed to perform physical manipulation tasks. As a consequence, the robotic agents often have to employ flexib...
متن کاملTowards performing everyday manipulation activities
This article investigates fundamental issues in scaling autonomous personal robots towards open-ended sets of everyday manipulation tasks which involve high complexity and vague job specifications. To achieve this, we propose a control architecture that synergetically integrates some of the most promising artificial intelligence (AI) methods that we consider as necessary for the performance of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010